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SUMMARY 
The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate 
with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical 
‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear 
differential equations resulting from the balance of momentum and mass, coupled with suitable boundary 
conditions, are solved numerically either by a finite difference method or by a collocation method with 
a B-spline function basis. The manner in which the various material parameters affect the structure of the 
boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the 
differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, 
is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturba- 
tion approach, as well as a singular perturbation. 
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1. INTRODUCTION 

A boundary layer flow for which a simple exact solution is available within the context of the 
Navier-Stokes theory is the asymptotic suction problem (cf. Reference 1, pp. 367-372). The 
counterpart of this problem has been studied within the context of a simple non-Newtonian fluid 
model, the incompressible and homogeneous fluid of grade two.2 

As both these fluids have a constant viscosity, the boundary layers are a consequence of inertial 
effects, the structure being somewhat modified in the latter case by the presence of a material 
parameter which is a measure of the normal-stress differences. The latter study also reveals that 
much more complexity can be expected when considering flows of non-Newtonian fluids. While 
only solutions allowing suction are possible in the case of the Navier-Stokes fluid, solutions that 
allow for suction or blowing of an incompressible fluid of grade two are possible. 

Boundary layer flows of non-Newtonian fluids have been studied by various authors3- 
because of their technological relevance. While most of this effort has been directed at studying 
traditional inertial boundary layers, a recent departure has been the study of boundary layers in 
shear-thinning power-law fluids, by Mansutti and Rajagopal” and Mansutti and P~ntrell i ,’~ 
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wherein boundary layers are found even when inertial effects are ignored. The pronounced 
boundary layers, by which we mean the concentration of the vorticity in a thin layer adjacent to 
the boundary, are due to the shear-thinning nature of the fluid, due to the non-linear dependence 
of viscosity on the stretching tensor. 

In this paper, we plan to study the ‘asymptotic suction’ problem for several non-Newtonian 
fluids past a porous plate, subject to suction or injection at the plate, with a view to delineate the 
effects of the various material parameters such as density, shear-thinning (or shear-thickening) 
viscosity and elasticity. Such a study might reveal some interesting information on the competi- 
tion between these various effects in non-Newtonian fluids. In order to do this, we pick three 
models. First, the power-law fluid which has a shear-dependent viscosity, but which can exhibit 
no normal stress differences. Next, we study the flow of a generalized power-law fluid of grade 
two, which has been recently used with success in modelling the flow of icy mush,14.15 which 
exhibits both shear-thinning and normal stress differences. Finally, an incompressible thermo- 
dynamically compatible fluid of grade three, which has a different structure for the generalized 
viscosity than the power-law model, and also exhibits normal stress differences, is considered. 

It would be appropriate to point out that the problem is not only of academic interest but is 
also of technical relevance. In the formation of polymeric or metallic sheets, the material in the 
liquid phase is spread over a horizontal porous sheet where it starts to solidify. The boundary 
layer which is formed affects the homogeneity of the sheet and to control the boundary layer 
thickness, the porous plate is subject to suction. Thus, the precise structure of the boundary layer 
is of consequence in many industrial applications. This of course presumes that the fluid under 
consideration can be modelled by one of the above fluid models of the differential type, and this 
may not be the case. Within the context of the Navier-Stokes fluid, suction is used for boundary 
layer control, as suction reduces the boundary layer thickness. The same is to be expected in the 
case of non-Newtonian fluids. However, it is possible that results contrary to those for 
Navier-Stokes fluids are possible in non-Newtonian fluids. For instance, while there exists no 
solution for blowing for the asymptotic suction problem for a Navier-Stokes fluid, solutions with 
blowing are possible in non-Newtonian fluids provided the material parameters satisfy certain 
conditions.’ 

In general, for fluids of the differential type of grade n, the equations of motion are of order 
(n + I). Thus, if n > 1, then the adherence boundar‘y condition is insufficient for determinacy. The 
standard method used to overcome this difficulty is to resort to perturbation that lowers the order 
of the e q ~ a t i o n , ~ - ~  but this is not mathematically rigorous as a singular perturbation is treated, as 
though it is regular. In fact, the a ~ t h o r s ~ - ~  are aware of this, but in the absence of any rational 
method for generating additional boundary conditions, they have no other way out of the 
impasse. It is possible that in flows in unbounded domains we can obtain additional conditions 
based on the asymptotic structure of the flow at infinity. Thus, this problem provides an 
opportunity to check how erroneous or correct the approach adopted in References 3-9 is. We 
find that solving the problem by appropriately augmenting the boundary conditions and using 
a singular perturbation approach, solving it numerically, and also by a regular perturbation as 
employed in References 3-9, the results agree remarkably well. This gives us some confidence in 
the methods used in References 3-9, and that may be such a method can provide useful results 
even when we are unable to properly augment the boundary conditions. 

We integrate the equations numerically by a finite difference scheme or, in order to increase the 
accuracy, by a collocation method built with a B-spline function basis. For all the models 
considered, we determine physically meaningful solutions when suction is present at the flat plate. 
While we find solutions for the case of the generalized fluid of grade two, we are unable to find 
solutions for the power-law fluid, suggesting the need of the normal stress differences to make 
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such solutions possible. Actually, when this quantity decreases, boundary layers assume very 
sharp profiles (they are almost singular at the wall). Moreover, the solutions that we find for the 
generalized fluid of grade two and for the fluid of grade three exhibit boundary layer thicknesses 
that are smaller or equal to the boundary layer thickness in the corresponding fluid of grade two, 
when either shear-thinning or shear-thickening occurs. We find that the shear stress is dependent 
on the suction/blowing velocity, on the mass density and the free stream velocity. 

We also solve the problem by a perturbation method adopting either the viscosity or the 
elasticity modulus as a perturbation parameter, which results in a regular or a singular perturba- 
tion, respectively. In fact, just the solution to the first order, in both cases, is very close to the full 
numerical solution. The study also stems from our general aim to check the validity of the 
perturbation technique that is frequently used in non-Newtonian mechanics, namely, using 
a regular perturbation, and lowering the order of the equation in the light of a paucity of 
boundary Moreover, this allows us to get information on the effect of the 
higher-order terms on the boundary layer structure. 

The formulation of the equations and the solution methods are presented in the second and 
third sections, respectively, the final section is concerned with the description of the numerical 
results. 

2. GOVERNING EQUATIONS 

The flow past a porous plate with suction or injection and with uniform stream at infinity has 
a two-dimensional (2D) structure.' It is governed by the momentum and mass conservation laws, 
which are represented by the following equations: 

pdq/dt=div T+pb 

div q=O (2) 

with q = (u, u) the velocity vector, T the Cauchy stress tensor, b the specific body force, p the mass 
density and d/dt the material derivative. We have considered three types of fluids and the 
expressions for their Cauchy stress tensors are the following: 

power-law model 

T + PI = p [tr(A !)Irn A, 

generalized Juid of grade two 

T +PI =p[tr(A:)]"' Al  + al AZ + a2A! 

fluid of grade three 

T +pI = pAl + ctl A2 + a2 A: + /3[tr(At)] Al  

(3) 

(4) 

where p is the indeterminate part of the stress due to the constraint of incompressibility, p>O is 
the viscosity, al 2 0, lcll + az 1 I J(24 pLp), fi 2 0 (cf. References 19-21) and Al and Az are the first 
and second Rivlin-Ericksen tensors,22 respectively. 

A~ = L + L ~  (6) 

A2=dAl/dt+LTAl+A1L (7) 
with L=grad q. 

We study the steady flow of the above fluids in the absence of body forces. We choose the x-axis 
parallel to the plate and the y-axis normal to it, and the velocity field to depend only on y. Under 
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this hypothesis, from equation (2) it follows that u(y)=uo, uo being the value of the vertical 
velocity at the plate; uo is negative for suction and positive for injection. 

The quantities p[tr(A:)]“ in equations (3) and (4), and p++[tr(A:)] in equation (5 )  are called 
‘apparent viscosity’ papp. The fluid is said to be shear-thinning (resp. shear-thickening) when 
dpapp/du’<O (resp. dp,,,/du‘> 0). It turns out that models (3) and (4) describe shear-thinning 
fluids for m<O and shear thickening fluids for m > O  and model ( 5 )  describes only shear-thickening 
fluids, as we only consider +>O. 

Furthermore, we observe that the above models allow non-zero normal stress difference, 
Txx- Tyy, only for a1 fO. 

As the second component of equation (1) reduces to dp/dy = 0 and we have, for the uniformity 
of the free stream at infinity, ap /ax  =0, and the equations of motion for the three models (3), (4), ( 5 )  
are, respectively, 

pvo ur = p [2”(u’)Z” + 1’ (8) 
puou’ = p [ 2 ” ( ~ ’ ) ~ ”  + 1’ + a1 u0u’” (9) 

p u o u ’ = p ~ ” + a l  uou”’+6~(u’)2u’ ’ .  (10) 

u(0) = 0 (1 1) 

u+U, asy-oo (12) 

As boundary conditions, we impose the adherence condition at the plate 

a free stream matching condition at infinity 

Note that equations (9) and (10) are one order higher than the Navier-Stokes equations and 
thus we require an additional boundary condition.16*17 Since the flow takes place in an 
unbounded domain, we can augment the boundary conditions based on the asymptotic structure 
of the velocity field or the boundedness of the solutions.23 Here, we augment the boundary 
conditions by requiring the vanishing of the shear stress at infinity as an extra boundary 
condition: 

Txy+O as y-m. (13) 

For each equation, as a first step in the solution procedure, we integrate analytically. The 

Finally, we obtain 
integration constant is computed by imposing the free stream matching condition (12). 

2”(U’)Z”+ - Ru + d = 0 

62.4‘’ + 2”(u’)*m+ - Ru + d = 0 

6 ~ ”  + (1 + €J(u’)2)u’ - RU + d = 0 

(14) 

(15) 

(16) 
where q = a l / p ,  R = p v O / p ,  6=Rq ,  0=2+/p, a = R U .  

We choose U = 1. This is tantamount to a partial non-dimensionalization. At this juncture it 
would be appropriate to point-out that we shall not present a non-dimensionalized study of the 
equations, as our primary aim is to qualitatively delineate the effect of the various material 
parameters on the flow by allowing one of them to vary, the others being fixed. Each of the figures 
presented in the section on results and discussions can be interpreted within such a spirit. 

A simple analysis leads to the conclusion that for the generalized fluid of second grade injection 
is possible only, if czl ZO. We first consider equation (14). Here, solutions with u’<O are not 
admitted, i.e. we seek solutions with U‘ 20 and hence 0 I u I U .  Note that the term (u’)~”’ arises 
as a consequence of the term (tr A:)“ Al  in model (3). Since in the case of injection R > 0, the term 
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- Ru + CJ = R( U - u) in equation (14) is non-negative. In fact, - Ru + o = R(U - u) is strictly 
positive for some YE[O, co) and thus the left-hand side of equation (14) is strictly positive while the 
right-hand side is zero, which implies that a solution with injection is not possible. On the other 
hand, in equation (15), for the case of injection we cannot apply this argument and no such 
conclusion can be reached. However, we have been unsuccessful in obtaining a solution in the 
case of injection when a1 ZO. 

Finally, in order to show more clearly the dependence of the flow on the parameters cxl (resp. b) 
for the third grade fluid, we also solve equation (16) by an asymptotic expansionz4 of the velocity 
u in power series in S (resp. in 91s). 

Regular perturbation method 

We say E~ =e/S and we suppose that the solution u can be expanded in a power series in cl:  

m 

u =  1 c;u,.  
n = O  

We observe that the perturbation parameter does not multiply the highest-order derivative. 
Thus, the perturbation by virtue of the boundary conditions (1 1)-(13) is a regular perturbation. 

By substituting equation (17) into equation (16) and by equating powers of cl, the zeroth and 
first-order approximations are obtained: 

(18) 

(19) 
We solve both the above equations with the boundary conditions (1 1)-(13). Note that uo is the 

solution to the second grade fluid equation (see (16) with O = O )  and c lul  is the first-order 
correction due to the third grade parameter 8. 

Sub: + U; - R u ~  + R = O  

SU;' + U; - Ru I + ub3 S = 0. 

It is trivial to show that 

u o ( y ) =  1 -ei2y (20) 

where 

i1=;[-f+J((f)'+3] 
i2 = ; [ - f - J( ( + 31 . 

The values for uo, and 
u=uo +&1U] 

are compared with the numerical solution and the solution for the singular perturbation in 
Table 11. 

Singular perturbation method 

Now we set c2 = S and we suppose that the solution u can be expanded once again in a power 
series in c2.  Note that the perturbation parameter multiplies the highest order derivative, and 
thus, we reduce the order of the equation by employing such a perturbation. 
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The zeroth and first-order equation are, respectively, 

[I + e ( u b ) 2 1 u b - ~ u ~ +  R = O  (24) 

(25) [I + 3e(ug)q u; - R~~ + u; = o 
where E ~ U ~  is the first-order correction to uo due to the presence of normal stress difference in the 
fluid (see equation (5)). 

In this case, the perturbation is singular as the order of the above equations is lower than that 
of the original equation (16). Thus an inner and outer expansion is considered by solving 
equations (24) and (25) once in a neighbourhood of y = 0 and imposing equation (1 1) and once at 
infinity by imposing equation (13). Unlike problems that usually require multiple scaling and 
complicated matched asymptotics, this problem is such that the outer expansion leads to the 
trivial solution uo= 1, u1 =0, with the inner expansion, satisfying this condition at its boundary, 
which is achieved by y = 10. Physically, this suggests that the solution is smooth enough that the 
growth of the highest order derivative does not dominate the flow. In fact, we see that this is 
indeed the case as our solutions from regular perturbation and singular perturbation and the 
numerical solution agree very well. Solutions over the whole domain, [O, a33 are obtained by the 
combination of the inner and outer expansion solutions. We require that the inner solution 
approach the outer solution in a twice continuously differentiable manner. 

In the case of singular perturbation, we once again compare our results with those for the full 
solution, for values of E~ as high as E~ = 1, and find the absolute error to be once again of the order 
of (cf. TableII). The solution presented in TableII is that for the inner solution which 
approaches the outer solution which is the trivial identity solution. 

3. NUMERICAL METHODS 

First, we solved the problem by a second-order finite difference scheme,25 for the power-law 
model (14). Then, in order to increase the accuracy, a collocation method with a B-splines 
function basis is adopted. Equations (15) and (16) are integrated up to a point y,,,, large enough 
that equation (13) is satisfied. In the following discussion, the main characteristic of this method is 
summarized. 

Let Y = [ y i ]  f: be strictly increasing sequence of breakpoints such that 
0 = y ,  < y 2  < .. < yl + = y,,, . Let c = [oil := be a non-decreasing sequence containing y1 and 
yl+ p + k times and each internal breakpoint k times, k, p and n being integers such that p = 2, the 
order of the differential equation k > 1 and n = kl + p .  

The set of B-splines of order k + p built on the knot sequence 1, [Bi];= is a basis for the space 
& + p , X = P k + p , y n C P - '  (0, ymax)  where P k + p , y  is the set of piecewise polynomial functions of degree 
k + p - 1 with breakpoint sequence Y and C P -  (0, ymax) has the usual meaning.26 

It is known that the following properties hold 

(i) Bi(y)>O VyeCol, o p + n + k ] ,  i = l ,  . * * 9 n 

(ii) Bi(y)>O vy#[ol, o i + k + p ] ,  i = l ,  . . . , n 
which implies that the only k + p  B-splines are non-zero in each interval [ y i ,  Y ~ + ~ ] ;  

(iii) f(y)= c j B j =  c j B j  i = l ,  . . . ,p+n-k-1 V y ~ [ y ~ , y ~ + ~ ]  
j =  1 j =  I -  ( k  + p )  + 1 

s- 1 

(iv) 1 Bi(y)=l V Y € [ Y , , Y ~ I  
i = r + l - ( k + p )  
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(v) [Bi(y)]l= is a relatively well conditioned basis: 

with Dk,m a positive constant depending only on k and not on the particular knot 
sequence X. 

We seek solutions belonging to &+,, 

n 

u(Y)= C ciBi(y) 
i =  1 

such that 

G( y, u, u’, U’’) = 0 

where G is a shortened form for equation (15) or (16). 

subinterval [yi, yi+ l]. 
Let [zj]ikf be a sequence of collocation points selected by choosing k distinct points in each 

The coefficients ci are computed as solutions of the non-linear algebraic system: 

G zj, C c ~ B ?  = O  j = l , .  . . , kl s=O, 1,2 ( i I 1  ) 
with the discretized form for equations (11)  and (13). 

It is known that the accuracy provided by a collocation method can be increased by choosing 
the roots of kth Legendre polynomial as the collocation points; the global error is O ( l A ) p + k ) ,  
lAJ being the maximum subinterval length.’7 

At the breakpoints, the order of the approximation is O( I A1 ’k). The value of k and 1 depend on 
the approximating function, and in our computations we fixed k = 4 and chose a variable number 
of breakpoints, more concentrated where strong gradients in the solution are expected. 

In the numerical experiments, we let all parameters present in the model vary, in order to gain 
insight on the role played in the corresponding flow by each of them. We solved equation (26) 
subject to the appropriate boundary conditions by the Powell method and locally parameterized 
continuation method” applied along one parameter at a time which will be referred to as PAR. 
When possible, we initialized with the solution for the Navier-Stokes or second grade fluid and 
we proceeded with PAR. The numerical code was built in a vectorized form and run on the IBM 
3090 at CICS in Rome. 

Table I. Analytical solutions for the fluid flow 
~ ~~ 

ymax (suction) y,,, (blowing) abs ( R )  

71.79 
10.67 
6.53 
4.97 
4.52 
4.52 
4.52 
4.52 
4.52 

0.1 
0.9 
1.58 
2.32 
2.59 
3.74 
4.11 
4.52 
4.97 

0.1 
1 
2 
4 
8 

20 
50 

100 
500 
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The following results have been obtained by collocation. For m=O, the analytical solution (cf. 
Table I) for the fluid of second grade has been used to check the accuracy of the numerical scheme. 
We have computed the solution for several values of the normal stress modulus al and/or the 
suction or blowing velocity and, by using 20 breakpoints (with an automatic local redistribution) 
and B-spline functions of degree five, an absolute error of 0(10-8) has been obtained. For the 
fluid of second grade, the thickness of the boundary layer decreases for increasing values of the 
suction velocity and increases for increasing values of the blowing velocity. 

4. RESULTS AND DISCUSSION 

Before we discuss the numerical results, we provide below a comparison of the results from the 
regular and singular perturbation with the numerical solution for the case R =- 1, 8=0.1, 
S=-Ol, as given in Table 11. We see that the results agree well. 

The first set of numerical results that we describe is related to the solution to the power-law 
fluid model (equation (14)). 

In this case the equation has been solved by a finite difference scheme using 100 grid points for 
sufficient accuracy; for the case m = 0, matching with the Navier-Stokes analytical solution 
provides a relative error < 0.0005. Figures 1 and 2 show the u-profiles for varying rn correspond- 
ing to shear thinning fluids for two fixed values of the suction velocity. It appears that when the 
suction velocity is strong enough, it enhances shear thinning effects. Increasing the suction 
velocity decreases the boundary layer thickness (Figure 2). Figure 3 shows that the change in 
behaviour of the solution with respect to the suction velocity. 

Table 11. Comparison of the numerical solution and the perturbations 

- 
Y U 

Regular perturbation Singular perturbation 

UO U UO El 

0.335 
0.835 
1.335 
1.835 
2.335 
2.835 
3.335 
3.835 
4.335 
4.835 
5.335 
5.835 
6.335 
6.835 
7.335 
7-835 
8.335 
8.835 
9.335 
9.835 

0254793 
0.524017 
0.697696 
0808466 
0.878769 
0923298 
0.951479 
0.969308 
0980586 
0.987720 
0.992233 
0995087 
0.996892 
0.998034 
0.998757 
0.9992 14 
0.999503 
0999685 
0.999801 
0,999933 

0.264263 
0.534630 
0.705643 
0813813 
0.882232 
0.925 509 
0952883 
0.970197 
0981149 
0.988076 
0.992458 
0.995230 
0-996983 
0.998091 
0.998793 
0.9992 3 6 
0.999517 
0999695 
0.998807 
0999935 

0.253900 
0.523434 
0.697387 
0.808293 
0.878666 
0.923235 
0.951439 
0.969283 
0.980571 
0.987710 
0.992227 
0995083 
0-996890 
0998033 
0.998756 
0.9992 1 3 
0.999502 
0-999685 
0.99880 1 
0.999933 

0.269839 
0.55023 1 
0.725510 
0.833 122 
0.898694 
0.93853 5 
0-962715 
0.977385 
0.986283 
0.99 1680 
0.994954 
0.996939 
0.998 144 
0.998874 
0.999317 
0.999586 
0.999749 
0.999848 
0.999908 
0.999944 

0.254269 
0.521983 
0.695409 
0.806647 
0.877587 
0.922660 
0.95 1222 
0.969282 
0.980683 
0-987867 
0.992389 
0.995231 
0.997014 
0.998 133 
0.998833 
0.999272 
0.999546 
0.999717 
0.999824 
0.999890 
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Figure 1. Velocity profiles for equation (14). Suction case: R = - 0 3  
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Figure 1. Velocity profiles for equation (14). Suction case: R=-0.5 

5: 

U 

Figure 2. Velocity profiles for equation (14). Suction case: R = - 1  
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When shear-thickening effects are considered, solutions have the shape displayed in Figure 4, 
where it can be seen that, when m increases, suction induces sharper boundary layers. 

Results described above report solutions up to y = 5, where the free stream velocity has not yet 
been reached in most cases. Actually, in order to reach that point (assumed to be infinity) 
a stretching transformation has been introduced. We adopted: y* = ln[(a -X,ax)/y;ax~ + xmIPX], 
where a and xmaX are parameters such that 0 -= a < 1 and xmax > 1. By using n = 100 grid points and 

5.0 

4.5 

4.0 

3.5 

3.0 

Y 2.5 

2.0 

1.5 

1 .o 

0.5 

o . o - ,  ~?~%8~~$~%~ , . , . 

U 

Figure 3. Velocity profiles for equation (14). Suction case: m=-0.4, - 1 <R-05, AR=O.05 

.OO -10 .20 .30 .40 S O  .60 .70 .80 .90 1 .OO 
U 

Figure 4. Velocity profiles for equation (14). Suction case: R=-0.25 
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1 .ooJ 

0.80- 

0.60- 

0.40- 

0.20- 

0.00 

for suction velocity R = - 1 and in =-0.45, u reached the value 0.855 at y = 1000, and thus the free 
stream velocity 1 has not yet been achieved. 

In the case of the generalized power-law fluid of second grade, normal stress differences add to 
the shear-thinning and shear-thickening effects and, as a consequence, solutions are possible even 
in the case of injection. 

Either with blowing or with suction, for increasing values of 6, the thickness of the boundary 
layer increases so that in general we can say that normal stress differences counteract the 
formation of such a structure. This is apparent in Figure 5 where results in the blowing case are 
reported, showing smoother profiles in the vicinity of the plate as 6 increases. 

Figures 6 and 7 displays the velocity field u, for values of m, with suction at the plate, for 
shear-thickening (shear-thinning) fluid from which the effects of the normal stress differences can 
be determined. 

We found that in the case of injection, the velocity profiles were not that sensitive to variations 
in the index m, at least for the range 0 I m I 0.4 (recall that m = O  corresponds to the fluid of grade 
two). It is worth noting that the difference in the order of magnitude of the boundary layer 
thickness in the case of suction and injection (see also the above table). 

As far as the third grade fluid model (16) is concerned, for both suction and blowing, we present 
two sets of results, for variations of the apparent viscosity parameter 0, and of R. We find that in 
the case of suction, decreasing the values of 0 (Figure 8) causes a sharpening of the boundary 
layer, as in the case of the power-law fluid (cf. Figure 4). Also, increasing the values of the suction 
velocity, provides a sharper boundary layer, as shown in Figure 9. Finally, increasing the rate of 
injection increases the thickness of the boundary layer as evidenced in Figure 10. 

We conclude by making a few remarks about the perturbation solutions. The singular 
perturbation method is based on the choice of 6 as the perturbation parameter and yields 
equations independent of q, and thus it allows for a better understanding of the effect of the 
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Figure 5. Velocity profiles for equation (15). Blowing case: R = l ,  m=Q2 
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Figure 6. Velocity profiles for equation (15). Suction case: R = - 2 5 ,  6=-0.25 
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Figure 7. Velocity profiles for equation (15). Suction case: R = -2.5, 6 =-0.25 
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Figure 8. Velocity profiles for equation (16). Suction case: R=-1 ,  S=-O.l 
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Figure 9. Velocity profiles for equation (16). Suction case: 8=0.1, 6=0,1*R 
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U 

Figure 10. Velocity profiles for equation (16). Blowing case: 0=0.1, 6=0.1*R 

solution on the specific perturbation parameter for various values of q. We find that increasing 
the normal stress coefficient leads to an increase in the boundary layer thickness. Here, computa- 
tions have been performed for 8=0.1, R = - 1  and q=O.OOl,  0.01,O.l (~~=-0.001, -0.01, -0.1). 
Similarly, in the case of regular perturbation, the coefficient 8 has been used as the perturbation 
parameter and the zeroth and first-order equations are independent of 8. Results for q=O.l, 
R=-  1 and 8=0~001,0~01,0-1 ( E ~  =-0.01, -0.1, - l), clearly confirm (see also Figure 10) that 
the more fluid shear thickens the thicker the boundary layer. 
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